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Abstract 

The present report describes the development of a one dimensional, one group neutron transport 

solver. The code implements the discrete ordinates method for angular discretization. The 

weighted diamond difference closure is implemented to relate the angular flux at cell centers to 

that at the faces in spatial discretization. The code supports multiple regions with volume sources 

and fission sources. Both albedo and incident source boundary conditions are supported. The 

Reed cell benchmark and the two region criticality benchmark are used to assess the results. 

Excellent agreement is observed between the results obtained from the code and the benchmarks 

using diamond differencing and step differencing. Using step differencing, a 0.06% difference is 

observed in k compared to the criticality benchmark, while that of diamond differencing is 

within 0.003%. 

 

Introduction 

Accurate prediction of the neutron flux distribution in a medium is essential for reactor 

applications, shielding, and medical physics. The neutron transport equation governs the 

transport of neutrons in media under the assumption that the neutron density is large enough for 

the neutron flux to be described as a continuum but small enough for neutron-neutron collisions 

to be negligible. Under the transport equation, neutrons are treated as non-decaying, point 

classical particles with collisions defined by 2 body localized events. Neutrons are assumed to 

have no memory of past collisions. Additionally, in reactor applications, short-timescale neutron 

effects on the medium are ignored.  

The neutron transport equation exists in two forms: integro-differential form and integral 

form. Analytical solutions of the neutron transport equation are limited to simple cases with very 

simple geometries. Practical cases of interest necessitate the use of numerical methods which 

rely on discretization in space, angle, and energy. For the results to be consistent and comparable 

to other work, independence of the discretization must be established within an acceptable 

tolerance. However, grid independence and convergence don’t guarantee accuracy of the results. 



Accuracy of the results depends on the numerical schemes used in the calculations and the order 

of error associated with such schemes.  

In addition to spatial discretization typical in most applications, the neutron transport 

equation requires careful treatment of the angle. Various methods have been developed such as 

the collision probability method, discrete ordinates method (Sn), spherical harmonics method 

(Pn), and the method of characteristics (MOC). The collision probability method solves the 

integral form of the transport equation and is useful when the scattering can be approximated as 

isotropic. It has the ability to handle complex geometry. It, however, requires the inversion of a 

large, dense matrix which can be computationally prohibiitive for large systems [1]. The discrete 

ordinates method, which is discussed in more technical detail later, is often used for the integro-

differential form of the transport equation and can easily handle anisotropic scattering. It is, 

however, difficult to apply to irregular geometries [1].  The method of characteristics is similar 

to the Sn method but can handle complicated geometry through ray tracing to determine the 

intercepts [1]. Low-order Sn method also suffers ray effects due to the inability of low-order Sn 

quadrature to integrate accurately over the angular flux. The Pn method was developed to 

remedy this problem [2] . It expands the angular flux in terms of orthogonal polynomials.such as 

legendre polynomials and spherical harmonics as shown in Equations 1 and 2. Sn method based 

codes can easily be transformed into Pn-1 codes with no fundamental changes to the main 

iteration or grid sweeping [2]. 
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The objective of the present project is to develop and benchmark a one dimensional, one 

group Sn method neutron transport solver. The solver should allow for multiple regions to be 

defined in a slab geometry with arbitrary mesh refinement in each region. Further, the solver 

should support volumetric sources, fission sources, and albedo and incident source boundary 

conditions.  

 

 



Methodology 

The neutron transport equation governs the transport of neutrons in the system. A particularly 

useful quantity for reactor design and shielding problems is the angular flux. The angular flux, 

𝜓(𝑟, 𝐸, Ω, 𝑡), is the product of the neutron density at a particular point in the phase space and the velocity 

of the neutrons. Unlike the scalar flux, it preserves information on the direction that the neutrons are 

traveling. The angular flux can be obtained by solving the neutron transport equation (Equation 3).  
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The direction dependent scattering kernel can be expanded in terms of Legendre polynomials and a 

direction independent scattering kernel (Equation 4). For most practical applications, a finite L can 

accurately characerize the original scattering kernel.  
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From the orthogonality of Legendre polynomials, we get that: 
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The relationship in Equation 5 can be used to obtain the angle independent scattering kernel. 

Using Equation 4 and reducing Equation 3 to a 1D slab case we get Equation 6. 
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The boundary conditions can be written in general (combined) form as in Equations 7 and 8. The 

combined form can be reduced to incident source or reflection forms by adjusting the 

parameters. 

 

ψ(0, μ) = ΓL(μ) + 𝛾 ψ(0, −μ)𝑤ℎ𝑒𝑟𝑒 0 <  μ ≤ 1 and 0 ≤  𝛾 ≤ 1  (7) 

 



ψ(L, μ) = ΓR(μ) +  𝛾 ψ(L, −μ)𝑤ℎ𝑒𝑟𝑒 − 1 ≤  μ < 0 and  0 ≤  𝛾 ≤ 1  (8) 

 

Up to this point, the discussion has been restricted to transport theory. The general transport 

equation in Equation 3 was reduced to the one dimensional form with Legendre expansion of the 

scattering kernel in Equation 6. Now we need to reformulate Equation 6 into a form that can be 

implemented numerically. To achieve this, we need to discretize space, angle, and numerically 

evaluate the integrals using numerical integration quadrature. The continuous integral 

representing the scalar flux in Equation 6 could be written and evaluated as a discrete integral 

using Equation 9. By careful choice of the angles and weights, the scalar flux can be evaluated 

exactly to a polynomial fit order of 2N-1 using Gaussian quadrature. The integration points, xi, 

are the roots of the Legendre polynomials. The weights of the Gauss-Legendre quadrature can be 

calculated from these roots as in Equation 10. The angular discretization is, therefore, not 

arbitrary but dictated by the integration points, xi. 
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Finally, the discretization in angle and the integration quadrature could be introduced into 

Equation 6 to obtain the discrete ordinate (Sn) transport equation for a one dimensional slab 

(Equation 11). This is the equation that is solved in the present project. 
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The outer iteration scheme implemented in the current project is described in Figure 1. Initially, 

the scalar flux is assumed to be uniform throughout the slab and of unity magnitude. The fission 

term is calculated and fed into the inner source iteration which is described in detail in Figure 2. 



The k-eigenvalue is then evaluated from the ratio of the volume integral of the fission term in the 

current iteration, 𝜈Σ𝑓(𝑧)𝜙(𝑧), to that in the previous iteration. The scalar flux is then updated 

and a mass balance check is done. The root mean square difference in the scalar flux in the 

present iteration and that of the previous iteration is calculated to obtain the L2 error. Two 

tolerances are specified by the user: an inner convergence tolerance for the inner source iteration 

and an outer convergence tolerance for the outer iteration. 

 

 

Figure 1: Description of the outer iteration scheme. 



 

Figure 2: Description of the inner iteration scheme. (A) Pseudocode for forward sweep, (B) 

Pseudocode for backward sweep, (C) Remainder of the steps in inner iteration 

  

A pseudocode for the inner iteration scheme is shown in Figure 2. The inner iteration 

consists of three main parts. In the first part, a forward sweep is employed to calculate the 

angular flux for positive valued ordinates. The sweep starts at the left boundary where the 

boundary condition is specified and described in general form as in Equation 12. The general 

form can be reduced depending on the physical situation (e.g. 𝛾 = 0 if boundary is non-

reflecting). Using the value at the left face and the weighted diamond difference closure in 

Equation 13, the angular flux can be evaluated at the cell center as in Equation 14. The weighted 

diamond difference closure can be used to obtain the angular flux value at the right face as in 

Equation 13 (forward march).  
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  Similarly a backward sweep described in Eqs. 15-17 is conducted to obtain the angular 

flux at negative valued ordinates. After calculating the angular flux, the scattering term in the 



right hand side of Equation 11 could be updated. The scalar flux can be calculated from Equation 

9 and the root mean square difference could be evaluated as discussed earlier and compared to 

the inner source iteration convergence tolerance. 
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Global Mass Balance 

To ensure proper implementation, a global mass balance check is conducted. The 1D slab 

transport equation shown in Equation 6 is first integrated over all angles to obtain Equation 18. 
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Second, Equation 18 is integrated over the length of the slab to obtain Equation 19 which can be 

expressed in symbolic form in Equation 20. 
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𝐿𝑅 + 𝐿𝐿 + 𝑇 =  𝐽−(𝑧𝑅) + 𝐽+(𝑧𝐿) + 𝑆 +   𝐹 + 𝑆𝑟 (20) 



The incident boundary source and the leakage terms in Equation 20 can be evaluated using 

Equations 21 and 22. 
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The boundary terms only involve angular integration. The transport, fission, and scattering terms 

involve integration over the slab. This integration is demonstrated in Equation 23 for the 

transport term. 
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The scattering term involves multiple integrations over angle and space as shown in Equation 24. 

No simplifications were made to the scattering term to ensure applicability of the mass balance 

check in isotropic and anisotropic scattering conditions. 
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The present project has been implemented in C++ and has made use of the equations 

described in this section. Multi-region problems with fission and volumetric sources are 

supported. Both albedo and incident source boundary conditions can be used. The code has a 

flexible input file structure for geometry, nuclear data, and system configuration specification. 

The input structure is described in the software manual accompanying the code.  

  



Results and Discussion 

The five region Reed cell benchmark [3] was used to assess the implementation of the code. A 

description of the system in the Reed cell benchmark is shown in Figure 3. In the present 

simulation, an inner convergence tolerance of 1e-6 and an equal outer convergence tolerance of 

1e-6 were used. 

 

Figure 3: Description of the Reed cell problem [1] 

 

First, mesh sensitivity analysis was conducted to ensure independence of the calculated 

results from the spatial mesh. The results were more sensitive to the mesh refinement in the first 

region than the other regions. This may be attributed to the much higher transport cross-section 

in the first region. Table 1 describes coarse and fine mesh cases that are compared in Figure 4.  

 

Table 1: Number of cells in each region 

Region: 1 2 3 4 5 Iterations 

Fine Mesh 200 50 100 50 40 59 

Coarse Mesh 20 10 20 10 20 57 

 

As shown in Figure 4, oscillations are observed at the interface of the first and second cells in 

the coarse mesh case. When the number of cells in the first region was increased from 20 to 200 

in the fine mesh case, these oscillations disappeared. Therefore, the fine mesh will be used for 

the remaining analysis for the Reed cell problem. It is interesting to note that the angular flux 



from the coarse mesh case exhibits similar trend as the fine mesh case. Using suitable ad-hoc 

filtering such oscillations in the coarse mesh solution may be eliminated and the solution from 

the coarse mesh case may be used as an initial flux distribution to the fine mesh case to 

accelerate convergence. 

 

Figure 4: Comparison of the scalar flux obtained using a coarse mesh and a fine mesh 

 

A comparison of the scalar flux obtained using diamond differencing to that obtained using 

step differencing is shown in Figure 5. The same spatial mesh and same number of ordinates of 8 

was used in both cases. Overall, excellent agreement is observed. Minor differences in the fourth 

region which had the least mesh refinement (Table 1) should be noted. This minor difference 

decreases by increasing the mesh refinement. Further, a comparison of the angular flux in the 

diamond differencing case to that in the step differencing case is shown in Figure 6 using polar 

contours. The center of the contour corresponds to the left boundary while the outside of the 

contour corresponds to the right boundary. The plots show the angular flux at different ordinates. 

No visible difference between the diamond differencing case and step differencing case is 

observed. 
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Figure 5: Comparison of the scalar flux obtained using diamond differencing and step 

differencing 
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Figure 6: Spatial and angular dependence of the angular flux for (A) diamond differencing) (B) 

step differencing. The left boundary of the slab is represented by r = 0 and the right boundary is 

represented by the outer diameter. 

 

The ISSA 2-Region criticality benchmark [4] was used to validate the k-eigenvalue 

calculation and the flux distribution in the presence of fission. A description of the geometry and 

material properties is shown in Figure 7. A comparison of the flux distribution and k-eigenvalue 

in diamond differencing and step differencing cases is shown in Figure 8. No visible differences 

in the flux could be observed. However, the k-eigenvalue obtained in the diamond differencing 

case was slightly different than that of the step differencing case. In particular, the k-eigenvalue 

in the diamond differencing case was 1.67834 and that in the step differencing case was 1.67733. 

Using the diamond differencing case as a reference, the relative difference between the two is 

~0.06%. Further, the angular flux for each case is plotted in Figure 9. The center of the contour 

corresponds to the left boundary while the outside of the contour corresponds to the right 

boundary. The plots don’t show observable differences in angular flux between step and 

diamond differencing. 

 

 

Figure 7: Description of the ISSA 2-Region Criticality Benchmark [1] 

 



 

Figure 8: Comparison of the scalar flux obtained using diamond differencing and step 

differencing 
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Figure 9: Spatial and angular dependence of the angular flux for (A) diamond differencing) (B) 

step differencing. The left boundary of the slab is represented by r = 0 and the right boundary is 

represented by the outer diameter. 

 

Table 2 shows a comparison of the mass balance and iterations needed for scalar flux 

convergence within 1e-6 mean square difference for the two benchmark cases. The mass balance 

was observed to be sensitive to the convergence criterion used in the inner and outer iterations. 

For the same convergence criterion stated above, it was observed that the step differencing case 

had a slightly smaller mass balance than the diamond differencing case. However, the difference 

was very small and given that only two cases were considered these observations don’t establish 

statistical significance. The Reed cell case required 59 iterations while that of the ISSA 

benchmark required a total of 257 inner iterations as a result of the outer fission iteration. The 

smaller mass balance in the ISSA benchmark case is a result of the higher number of total inner 

iterations due to the outer fission iterations. 

 

Table 2: Comparison of mass balance and iterations needed for convergence in each cases 

Case Differencing Scheme Mass Balance Iterations 

Reed Cell DD 2.1918e-07 59 

Reed Cell SD 2.0547e-07 59 

ISSA Benchmark DD 3.0394e-09 257 

ISSA Benchmark SD 2.9985e-09 256 

 

Finally, the benchmark results can be compared to that of Deo et al [1]. Excellent agreement 

with Deo et al. is observed for both the Reed Cell benchmark and the ISSA benchmark. The flux 

shapes for both cases are identical. Using step differencing, a 0.06% difference is observed in k 

compared to Deo et al., while that of diamond differencing is within 0.003%.  

 

Acknowledgements 

Corey Skinner (UNM) is acknowledged for providing ordinates function.  

 

 



References 

[1] Deo, K., Krishnani, P.D., and Modak, R.S., “Development of One-Dimensional Neutron 

Transport Theory Code Based on Method of Characteristics,” BARC/2014/E/015 

[2] Lewis, E.E., Miller, W.F., “Computational Methods of Neutron Transport,” Wiley-

Interscience, PP. 198-199 

[3] Buchan, A. G.  et. al., “Linear and Quadratic Octahedral Wavelets on the Sphere for Angular  

Discretisations of the Boltzmann Transport Equation”, ANE 32 (2005) 1224–1273 

[4] Issa, J.G., Riyait, N.S., Goddard, A.J.H., et al., “Multigroup Application of the Anisotropic 

FEM code FELTRAN to One, Two, Three-dimensional and R-Z problems”, Prog. Nucl. Eng. 18 

(1), 251–264 (1986) 

 


